

Photo: Ove Hoegh-Guldberg

Censusing the Sea in the 21st Century

Nancy Knowlton & Matthieu Leray

Smithsonian's National Museum of Natural History

Estimates of Marine/Reef Species Numbers (Millions)			
Marine Habitat	Global Ocean	Data Type	Author, Date
10 deep sea	<u>—</u>	box cores, 21 m ²	Grassle & Maciolek, 1992
0.6-9.5 coral reefs	1.9-30.6*	tropical forests, species-area	Reaka-Kudla, 1997
1.7-3.2 coral reefs	5.5-10.3*	5 m ² reef samples, species-area	Small et al., 1998
0.4-0.5* Coral reefs	1.4-1.6	European brachyuran crabs	Bouchet, 2006
0.7*	2.2	ratios of taxa	Mora et al., 2011

expert opinion

expert opinion

Appeltans et al.,

2012

Fisher et al.

2015

*Assumes 31% of marine species live on reefs

0.7 - 1.0

1.6-2.4*

coral reefs

0.2-0.3*

coral reefs

0.5-1.3

Why so hard? Most marine species are small and rare

33-91% of all marine species still to be named

Global analyses ignore almost all biodiversity

Some fish 1700 spp

> Corals 804 spp

Some snails 662 spp

Lobsters 69 spp

All??? 3235 spp (~250,000 descr.)

Census of Marine Life - CReefs

Artificial Surfaces (ARMS)

DNA Natural Surfaces (dead heads)

Standardization -

Allows results of different studies to be compared

Automation -

Identify species using genetics rather than names

Scalability -

World-wide sampling strategy is feasible

First Studies: Barcoding Crustaceans

Number of Samples

Plaisance et al. PLoS One 2011 Unpublished data

Put Another Way....

Just 6.3 m² contained the equivalent of 80% of the described crab diversity of European seas!

Barcoding works well for the charismatic microfauna

What about the sessile stuff?

Indonesia (Photos: David Littschwager)

Or the fairly small stuff? (<2mm)

Photos: Matthieu Leray

From Barcoding to Metabarcoding

Bulk Sample

Next-Gen Metabarcodes

(easier said than done)

4 Fractions (+ vouchers)

COI Metabarcode

3) 2mm-500 µm

2) > 2mm

COI barcode

Oyster reefs (6-month deployment)

Leray & Knowlton, PNAS 2015

At what geographic scale are communities different?

Chesapeake Bay, Virginia (9 ARMS) Ft. Pierce, Florida (9 ARMS)

#sequences: 572,290

% matched: 10.2

% unknown: 40.9

% singletons: 34.8

409,613

11.9

28.3

31.1

Diversity

Sub-tropical Florida is more diverse 2/3 of diversity is < 500µm

Community similarity

Relative abundance

Different locations and metabarcoding communities are distinct

Taxonomic composition Virginia Florida

Leray & Knowlton, PNAS 2015

22 animal phyla - Arthropods most diverse

More Sampling Needed

(similar pattern for sampling effort measured by # sequences)

Fine-scale geographic structuring

VA

Adjacent samples cluster together at the meter scale

Leray & Knowlton, PNAS 2015

Abundance information as well as presence-absence

65.3% to 91.7% of OTUs successfully recovered per sample Linear relationship between number of reads and amount of DNA

Even stronger relationship for functional groups

Similar results for sessile community calibrated by % cover

Not Just an Abstract Exercise Marine Biodiversity in the Anthropocene

Marine defaunation: Animal loss in the global ocean

Douglas J. McCauley^{1,*}, Malin L. Pinsky², Stephen R. Palumbi³, James A. Estes⁴, Francis H. Joyce¹,

Robert R. Warner¹

Example: Effects of Ocean Acidification

Biodiversity sampling from PNG CO₂ seeps

Example: Effects of Ocean Acidification

Normal (pH 8.0)

Low (pH 7.7)

284 individuals >2mm 82 OTUs

114 individuals >2mm 43 OTUs

Smallest Fraction Less Sensitive to Acidification?

Looking Forward

Multi-gene PCR-based to increase taxonomic coverage

Shotgun metagenomics approach to

- avoid PCR bias
- capture metabolic genes and look at local adaptation

Global deployments and analyses: MarineGEO/PBM?

What are some big questions/challenges?

What are the really dark taxa? (need branches, not twigs)

How does biodiversity scale geographically by taxonomic group? by body size? as a function of location?

What is the nature of rarity?

Are there biodiversity collapse thresholds?

How is biodiversity changing? (need community vouchers)

What lives in the sea (or even a bay)?

Thanks – Questions?

Bioinformatics pipeline

WORKFLOW

PROGRAMS

Initial quality filtering

---->

Mothur

 \triangle

Alignment to ref. barcode

&

Removal of non functional sequences based on amino acid translations

- - - - - ->

MACSE

 \triangle

Chimera removal

----->

UCHIME

 \triangle

OTU clustering

Ţ

---->

CROP

Taxonomic assignments

---->

Blast & SAP

 \Diamond

OTU table

Individual- & sample-based rarefactions

PCoA and jacknifed clustering analysis

- - **->**

EstimateS QIIME R (Vegan)